2.3.3 Description of Elliptic Curves
In general, elliptic curves take the form: y2+ axy + by = x3+ cx2+ dx + e where a, b, c, d, and e are the real numbers satisfying to some conditions [Sti02].  We concentrate on elliptic curves over finite fields Zp*.  The elliptic curve E over Zp* is defined as following:

Definition 2.1: Let a, b ( Zp* be constants such that 4a3+27b2 ( 0.  An elliptic curve is the set E of solutions (x, y) ( Zp*, to the equation:

y2 = x3 + ax + b (mod p)








(2.1)

together with a special point O called the point at infinity.

Example:

Let p = 19 and consider the elliptic curve E: y2 = x3 + x + 1 defined over Z19*.  In this case,   a = b = 1. We have 4*13+27*12(mod 19) = 14 ( 0, which satisfies the condition for an elliptic group mod 19.  The points in E(Z19*) are O and the following:

Table 2.3 Points on the Elliptic Curve E(Z19*)
	(0, 1)
	( 7,16)
	(14, 2)

	(0,18)
	( 9, 6)
	(14,17)

	(2, 7)
	( 9,13)
	(15, 3)

	(2,12)
	(10, 2)
	(15,16)

	(5, 6)
	(10,17)
	(16, 3)

	(5,13)
	(13, 8)
	(16,16)

	(7, 3)
	(13,11)
	




The addition and multiplication operation in ECC are counterpart of modular multiplication and exponentiation in RSA, respectively.  Let P = (x1, y1) and Q = (x2, y2) be two points on an elliptic curve E.  Then, P + Q = R, we show it as Fig 2.4 and Fig 2.5 geometrically.

Fig 2.4 P and Q are two distinct points

Fig 2.5 the addition of an elliptic curve point


First at all, we have to find the slope of 
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, where P≠Q  or the tangent line of P, where    P = Q.  We show as following:
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[image: image3.wmf]PQ

.
                     
[image: image4.wmf]1

2

1

2

3

y

a

x

+

 if P = Q, where ( is tangent line of P.


(2.2)

The equation of line L is y = (x + v.  The P = (x1, y1) and Q = (x2, y2) is on L so that:

y1 = (x1 + v and y2 = (x2 + v.  We substitute y = (x + v into the equation (2.1), getting the following:



((x + v)2 = x3 + ax + b


x3 - (2x2 + (a-2(v)x + b –v2 = 0








(2.3)


x1 and x2 are two roots of equation (2.3), which are real.  As the result, the third root, said x3, must also be real.



(x - x1)(x – x2)(x – x3)



= x3 – (x1 + x2 + x3)x2 +(x1x2 + x2x3 + x1x3)x-x1x2x3 = 0




(2.4)


Comparing equation (2.3) and (2.4), we know that (2 = x1 + x2 + x3.  Hence,



x3 = (2 - x1 - x2

The slope ( = 
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; hence:



y3 = ((x1 – x3) – y1

The rules for the sum of two points and the double of one point, we summarize as follows: for all P, Q ( E (Zp*) [Men93]:

1. P + O = P
2. If P = (x, y), then the point (x, -y) denoted as - P and P + (- P) = O
3. Let P = (x1, y1) and Q = (x2, y2), where P≠Q, then P + Q = (x3, y3) where



x3 = (2 - x1 - x2,




y3 = ((x1- x3) - y1, where the slope ( show as equation (2.2).
ex. E: y2 = x3 + x + 1 defined over Z19* (0,1)+(0,1) 



( = 1/2 = 1*(2的反元素) = 10 (in Z19*)



x3 = (2 - x1 - x2 = 10^2-0-0 = 5



y3 = ((x1 – x3) – y1 = 10(0-5)-1 = -51 = 6 mod 19



so (0,1)+(0,1)=(5, 6)
ex. E: y2 = x3 + x + 1 defined over Z19* (0,1)+(5,6) 



( = (6-1)/5 = 5 *4 = 1(in Z19*)



x3 = (2 - x1 - x2 = 1-0-5 = -4 = 15


y3 = ((x1 – x3) – y1 = 1(0-15)-1 = -16 =3


so (0,1)+(5,6)=(15, 3)
G: (0,1), 

5: secret key, 5G public key 假設為(13,8), 很難從(13,8)推出5
Given an elliptic curve E, over a Galois field GF(q), the operation “+” is defined as above paragraph and the operation “*” defined as Z×E(q) → E(q) where E(q) is rational points form (x, y), and both x and y are in GF(q).  If P is some point in E(q), then we define:

2*P = P + P, 3*P = 2*P + P = P + P + P, and so on.

The ECDLP is then to determine integer k in k*P = Q, where P and Q are the given points.  For a specific base point G is selected and published for use with the curve E(q), Alice chooses a private key k as random integer and then the value P = k*G is published as the public key.  To encrypt a message m to Alice, we show as follows:

1. Convert m to into an element Pm of E(q)
2. Choose a random integer r
3. Calculate ciphertext Cm = {rG, Pm+rP}

4. Send the ciphertext Cm to Alice
Alice can decrypt ciphertext by multiplying the first point in the pair of Alice’s secret key and subtracts the result from the second point:




Pm + rP – k(rG) = Pm + r(kG) – k(rG) = Pm.

3.4.1 DSA

DSA has become FIPS 186 in August 1991; also called DSS.  DSA is a variant of the Schnorr [Sch90] and ElGamal [EIG85] signature algorithms.  The algorithm of DSA uses the following parameters [NIST00] and publishes the first three parameters: p, q, and g:

1. p = a prime modulus, where 2L-1 < p < 2L for 512 ( L (1024 and
L is a multiple of 64.
2. q = a prime divisor of p - 1, where 2159 < q < 2160.
3. g = a(p-1)/q mod p, where a is any integer with 1 < a < p - 1 such that
a(p-1)/q mod p > 1 (g has order q mod p).
4. x = a randomly or pseudo-randomly generated integer with 0 < x < q, denoted as private key.
5. y = gx mod p, denoted as public key.
6. k = a randomly or pseudo-randomly generated integer with 0 < k < q.

The algorithm of DSA also uses a one-way hash function, h(m), SHA-160 as described in section 2.4. To sign a message m:

1. Alice selects a random number, k, less than q.

2. Alice generates

r = (gk mod p) mod q
s = (k-1(h(m)+xr)) mod q
where r and s are her signature sent to Bob.

3. Bob verifies the signature by computing:

w = s-1 mod q
u1 = (h(m)*w) mod q
u2 = (rw) mod q
v = ((
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If v = r, then Bob accepts the signature.

DSA Correctness Analysis

We start DSA correctness analysis with a lemma 3.1 to show that gq mod p = 1.

Lemma 3.1: Let p and q be primes so that q divides p - 1, h a positive integer less than p, and g = a(p-1)/q mod p.  Then gq mod p = 1, and if m mod q = n mod q, then
gm mod p = gn mod p.

Proof:
gq mod p
= (a(p-1)/q mod p)q mod p
= a(p-1) mod p
= 1
by Fermat's Little Theorem. Let m mod q = n mod q, i.e., m = n + kq for some integer k. Then

gm mod p = gn+kq mod p
= (gn gkq) mod p
= ((gn mod p) (gq mod p)k) mod p
= gn mod p
since gq mod p = 1.











□

Theorem 3.1: If m'= m, r' = r, and s' = s in the signature verification, then v = r'.

Proof:
w = s'-1 mod q = s-1 mod q
u1 = (h(m')*w) mod q = (h(m)*w) mod q
u2 = (r'w) mod q = (rw) mod q
Now y = gx mod p, so that by the lemma 3.1,

v 
= (
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Also

s = (k-1(h(m)+xr)) mod q.

Hence

w = (k(h(m)+xr) -1) mod q
(h(m)+xr)*w mod q = k mod q.

Thus by the above lemma,

v
= (
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= (gk mod p) mod q
= r
= r'.














□


By Theorem 3.1, a verifier can check the valid of signature correctly.

3.4.2 ECDSA

ECDSA is counterpart of DSA and operates on elliptic curve group E(Zp*).  We describe key generation, signature, and verification for ECDSA as follows:

ECDSA key Generation

1. Selects an elliptic curve E over Zp*.

2. Select a point P( E (Zp*) where order is also prime n.

3. Select a statistically unique and unpredictable integer d in the interval [1, n-1].

4. Compute Q = dP.

5. The public key is (E, P, n, Q); the private key is d.

ECDSA Signature Generation
1. Select a statistically unique and unpredictable integer k in the interval [1, n-1].

2. Compute kP = (x1, y1) and r ≡ x1 mod n.  If r = 0, then go to step 1.

3. Compute k-1 mod n.

4. Compute s = k-1[h(m)+dr].

5. If s = 0, then go to step 1.

6. The signature for the message m is the pair of integers (r, s).

ECDSA Signature Verification

1. Obtain an authentic copy of Alice’s public key (E, P, n, Q).

2. Verify that r and s are integers in the interval [1, n-1].

3. Compute w≡ s-1 mod n and h(m).

4. Compute u1≡ h(m)w mod n and u2 ≡ rw mod n.

5. Compute u1P + u2Q = (x0, y0) and v ≡ x0 mod n.

6. Accept the signature if and only if v = r.

Theorem 3.2: If the signature of ECDSA is valid, then v = r.
Proof:
s = k-1[h(m)+dr], hence k = s-1[h(m)+dr]

(x1, y1)
= kP = s-1[h(m)+dr]P
(x0, y0)
= u1P + u2Q = h(m) wP + rwdP


= [h(m)s-1 + rs-1d]P


= s-1[h(m)+dr] = (x1, y1)

Therefore, v = x0 mod n = x1 mod n = r








□

By theorem 3.2, we verify the signature of ECDSA through the equation v = r.

4.1.3 Proxy Signature based on ECDSA

First we let Alice have private key x and public key Q = xG certificated by a certificate authority.  Bob is a designated proxy signer.

Proxy generation and delivery
Bob:

Select a random number, ko (
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Compute G' = koG mod q.

Bob( Alice
G'.

Alice:
Select a random number,
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Compute RA = kAG.

Set (x1, y1) = kAG'.

Compute e = h(x1) and set sA = (xe + kA) mod q.

Alice( Bob 
(RA, sA).

Proxy verification and proxy key generation
Bob: 
Let (x2, y2) = koRA, and Set rA = x2,

Compute e’ = h(rA) mod q.

Compute 
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= sAG – e’Q.

Accept the delegation if and only if rA = x2'.

Once Bob accepts the delegation, he will compute sB = sA
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 mod q as a proxy key; and will send the certificate request [RSA00] to the RA.  According to certificate policy, RA identifies Bob and then forwards the certificate request to the CA for signing proxy certificate.

Signing by the proxy signer
Bob:

Select a random number k (
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Compute (x3, y3) = kG'.

Set r = x3.

Compute s = k-1(h(m) + sBr) mod q.

If r = 0 or s = 0 then re-select another random number k and run again.

The proxy signature for the message m is (G’, RA, e’, r, s).

Verification of the proxy signature
Carol:
Verify that r and s are integers in interval [1, q-1].

Compute  w = s-1 mod q.

Compute 
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Compute 
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Compute 
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Compute X = 
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= u1G’ + u2RA + u3Q.

If X = O, then reject the signature, else accept the signature if and only if 
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The proxy-protected ECDSA could be also deployed in ECDSA by taking parameters G' = G, RA = 0 and e' = 1.

4.1.3.1 Correctness of proxy signature scheme based on ECDSA
Theorem 4.3: If the delegation certification (RA, sA) is valid, then rA = x2’, where
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Proof:

Firstly, we proof that e = e’
(x1, y1) = kAG' = kAk0G = k0kAG = k0RA;

rA = x2, where (x2, y2) = k0RA

Hence, e = h(x1) = h(rA) = e’
∵ sA = (xe + kA) mod q;
Substitute e’ for e in above equation, then we obtain

sA =(xe’ + kA) mod q.

Rearrange the above equation as

kA =(sA - xe’) mod q.

Multiple G on both sides



RA = kAG = (sA - xe’)G = sAG - xe’G = sAG - e’Q =
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□

Theorem 4.4: If the proxy signer generates the proxy signature correctly, it will pass the proxy signature verification.

Proof:

We have a valid proxy signature s = k-1(h(m) + sBr) mod q.

Rearrange the signature as

k = s-1 ( h(m)+ sBr) mod q
k = s-1 ( h(m)+ sA
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sB = sA
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k = s-1 [ h(m)+(xe + kA)
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sA = (xe + kA) mod q)

Multiple G’ on both sides

kG’ = s-1G’[ h(m)+(xe + kA)
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  = s-1G’h(m) + s-1xeG’
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  = s-1h(m)G’ + s-1xeGr + s-1kAGr (
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  = u1G’+ u2xeG + u2kAG (
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u1 = h(m)w = h(m)s-1; u2= rw = rs-1)




  = u1G’+ u2xe’G + u2RA (
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e = e’; RA = kAG)




  = u1G’+ u2RA + u3Q (
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u3 = e’u2G; Q = xG)




   □
This proof show that the proxy signature scheme based on ECDSA fulfills verifiability property; and by theorem 4.3 and 4.4, a verifier can check the valid of proxy signature.

4.1.3.2 Proxy Signature based on ECDSA example demonstration
In some reports concerning security estimation, the elliptic curve based on cryptosystem will be secure till the year 2020. It has been suggested that one should take p (2160. In this section we work through a tiny example to illustrate the computations in the proxy-protected ECDSA.

Let E be the elliptic curve y2 = x3 + x + 1 over Z19*.  The parameter q is the number of points in E.  We first compute x3 + x + 1 mod 19 for x(Z19*, and then try to solve the above equation for y; and set z = x3 + x + 1 mod 19 and test if z is a quadratic residue (QR), by Euler’s criterion.  If the modulo prime p = 3 mod 4, we could yield the square roots of a quadratic residue z as following formula:
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The results of the computing are listed in Table 4.1.

Table 4.1 Points on the elliptic curve x3 + x + 1 mod 19

	X
	z=x3 + x + 1 mod 19
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	y
	Is QR?

	0
	1
	1,18
	1
	1,18
	(

	1
	3
	15,4
	16
	
	

	2
	11
	7,12
	11
	7,12
	(

	3
	12
	8,11
	7
	
	

	4
	12
	8,11
	7
	
	

	5
	17
	6,13
	17
	6,13
	(

	6
	14
	10,9
	5
	
	

	7
	9
	16,3
	9
	16,3
	(

	8
	8
	12,7
	11
	
	

	9
	17
	6,13
	17
	6,13
	(

	10
	4
	17,2
	4
	17,2
	(

	11
	13
	14,5
	6
	
	

	12
	12
	8,11
	7
	
	

	13
	7
	11,8
	7
	11,8
	(

	14
	4
	17,2
	4
	17,2
	(

	15
	9
	16,3
	9
	16,3
	(

	16
	9
	16,3
	9
	16,3
	(

	17
	10
	3,16
	9
	
	

	18
	18
	18,1
	1
	
	


We can take the generator G = (7,3); and compute the remaining multiples of G by applying the addition operation on E.  The addition operation on E is defined as follows:

Suppose P1 = (x1, y1), P2 = (x2, y2) are the points on E.  If x2 = x1 and y2 = - y1, then p1+p2 = O where O is a special point, called point at infinity; otherwise
P1 + P2 = (x3, y3), where 
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Therefore, the next multiple is 2G = G + G, 3G = 2G + G, and so on. The results of these computations are tabulated in Table 4.2.

Table 4.2 The multiples of generator G
	G = (7,3)
	2G = (16,3)
	3G = (15,16)
	4G = (13, 11)
	5G = (5,6)

	6G = (14,17)
	7G = (2,7)
	8G = (0,18)
	9G = (10,17)
	10G = (9,13)

	11G = (9,6)
	12G = (10,2)
	13G = (0,1)
	14G = (2,12)
	15G = (14,2)

	16G = (5,13)
	17G = (13,8)
	18G = (15,3)
	19G = (16,16)
	20G = (7,16)


Suppose that Alice’s private key x is 3, so the public key is Q = 3G = (15, 16).

Proxy generation and delivery
Bob :
Select a random number, ko, said 5;



and compute G' = koG = 5G = (5, 6) 

Bob( Alice G'

Alice:
Select a random number, kA, said 4;



and compute RA = kAG = 4G = (13, 11);



set kAG' = 4(5, 6) = (7, 16) = (x1, y1).

Suppose that e = h(7) = 4 . Alice computes 

sA = (xe + kA) mod q = (3*4+4) mod 19 = 16 and
forward (RA, sA) = [(13, 11), 16] to Bob.

Proxy verification and proxy key generation
Let (x2, y2) = koRA = (7, 16), rA = x2 = 7 . Then, Bob computes

e’ = h(rA) = h(7) = 4.

and accepts the delegation if x2' = 7 = x2 where
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= 16*(7,3)-5*(15,16) = (7,3)

The proxy key is:
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 mod q = 16*5-1 mod 19 = 16*4 mod 19 = 7,

and we omit the process of enrolls proxy key into the PKI.

Signing by the proxy signer
Suppose that the message is m, h(m) = 8 and k = 13. To sign the message, Bob computes

(x3, y3) = kG' = 13*(5,6) = (16,3),

sets r = x3 = 16 and creates proxy signature,
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mod q = 13-1(8 + 7*16) mod 19 = 3*6 mod 19 = 18.

The proxy signature is (G’, RA, e’, r, s) = [(5, 6), (13, 11), 4, 16, 18].

Verification of the proxy signature
The verifier does the following processes:

w = s-1 mod q = 18-1 mod 19 = 18,

u1 = h(m)w mod q = 8*18 mod 19 = 11,

u2 = rw mod q = 16*18 mod 19 = 3,

u3 = e'u2 mod q = 4*3 mod 19 = 12,


and 

X = (x3’, y3’) = u1G’ + u2RA + u3Q mod q
   =11*(5, 6) + 3*(13, 11) + 12*(15, 16) mod 19 = (16,16).

The verifier accepts the signature, because x3’ = 16 = x3.
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