群 (Group)
Def: 一集合 G,與二元運算子(operator) * (稱之為乘法),滿足:
1. 封閉律:對任意運算元(operand) a, b ∈ G (∈ or [-代表屬於的意思),則 a*b ∈ G
2. 結合律:對任意 a, b, c ∈ G,則 (a*b)*c = a*(b*c)
3. 存在單位元素:存在 e ∈ G,使得對任意 g ∈ G,e*g = g*e = g
4. 存在反元素:對任意 g ∈ G,存在 h ∈ G,使得 g*h = h*g = e
符合以上四點之 (G,*),稱之為 "群"
交換群 (commutative group, abelian group)
Def: 當一群 (G,*),滿足:
對任意 a, b ∈ G,a*b = b*a 時,
(G,*) 稱之為交換群
環 (Ring)
Def: 一集合 R,二元運算 + (加法),與二元運算 * (乘法),滿足:
1. (R,+) 為交換群(加法單位元素記為 0)
2. 乘法之封閉律:對任意 a, b ∈ R,則 a*b ∈ R
3. 乘法之結合律:對任意 a, b, c ∈ R,則 (a*b)*c = a*(b*c)
4. 存在乘法之單位元素:存在 1 ∈ R,使得對任意 a ∈ R,a*1 = 1*a = a
5. 分配律:對任意 a, b, c ∈ R,則 (a+b)*c = a*c+b*c,c*(a+b) = c*a+c*b
符合以上五點之 (R,+,*),稱之為 "環"
交換環 (commutative ring)
Def: 一環 (R,+,*),滿足:
對任意 a, b ∈ R,a*b = b*a 時,
(R,+,*) 稱之為交換環
體 (Field)
Def: 一集合 F,二元運算 + (加法),與二元運算 * (乘法),滿足:
1. (F,+,*) 為交換環
2. 除了 0 之外的元素均存在乘法反元素:
對任意 a ∈ G, a != 0,存在 b ∈ G,使得 a*b = b*a = 1
符合以上二點之 (F,+,*),稱之為 "體"
Stephen H. Friedberg Linear Algebra
Define (a1, a2)+(b1, b2) = (a1+b1, a2-b2) and c(a1, a2)=(ca1, 0), 請問是 Vector space嗎?
Definition: A subset W of a vector space V over a field F is called a subspace of V
if W is a vector space over F with the operations of addition and scalar multiplication defined on V.